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SUMMARY ]

The proof of the theorem that the elliptical distribution
of lift over the span is that which will gire rise to the
minimum induced drag has been giren in a rariely of
ways, generally speaking too difficult to be readily
followed by the graduate of the arerage good technical
school of the present day. In the form of proof here-
with, an effort is made to bring the matter more readily
within the grasp of this class of readers. The steps in
the proof, briefly outlined, are as follows:

1. Giren a basic distribution of lift across the span
denoted by (a) with o second supplementary distribution |
denoted by (1). Then it is shown that the induced drag
of lift (@) in the downwash due to lift (1) and the induced
drag of lift (1) in the downwash due fo lift (a) are equal,
and that the total effect of the small distribution (1) on
the induced drag will be measured by twice either of these
small quantities.

2. Next two small changes are assumed in o basic
distribution (a). These are represented by (1) and (2),
and are further assumed to be equal in amouni and
opposite in algebraic sign, thus learing the original lift
unchanged in amount, but changed in disiribution.
Under these conditions it is then shown that in order
for the distribution (a) to be that for minimum induced
drag, the change in induced drag due to this small change
in disiribution must be zero.

8. It is next shown that for any pair of small changes |
such as (1) and (2) the only value of the basic down-
wash which will meet the condition of step (2) is down-
wash constant across the span.

4. It i¢ knoun mathematicalf.y that the elliptical dis-

tribution across the span is that which gives a constant
ralue of the downwash and hence as a result of ( ), @), ;
(3), this must be the distribuiton which will give the I
minimum value of the induced drag. |

The theorem setting forth the ellipticel distribution
of lift over the span of an airplane as that which will
give rise to the minimum induced drag is one of funda-
mental importance in connection with the study of .
many problems in aerodynamic theory. Its proof has
been given by the use of the calculus of variations and
otherwise, but hitherto, so far as the present writer
has noted, in form and procedure adapted rather to

the expert than to the graduate of the average good
technical school of the present da.y The present proof
has been prepared with the view of bringing a better
understanding of this important theorem more readily
within the grasp of the fechnical graduate who, so

far as mathematics is concerned, has no more than a

fair grasp of the elements of d.tﬁ'erentlal and integral

calculus.

We at first state the general aerodynamic elements
involved in the problem, and with which we assume
the reader to be familiar.

NOTATION

Let z denote any point on the span of the plane,
reckoned from the center as origin.
yd.'z=lift for a short length of span dr at the point z.
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T'=the circulation, or vortex strength at the point .
w=the induced or downwash velocity at any point
determined by an ebscissa z;.

b=1the half span.

V=velocity of plane.

p=density of medium.

D=induced, drag.

Let the distribution of lift across the span be given
by any curve as in Figure 1.

"We mske only two assumptlons regarding the
character of this distribution.

(1) The value of ¥ is zero &t each end.

(2) The curve ABCD has no ebrupt changes in
curvature.

That is, the value of dy/dz varies continuously along
the curve from A to D.

Then the elementary theory of lift gives y=T V p.
But V and p are constant for the plane and therefore
y is everywhere proportional to I' and vice versa.

Consider any point P on the span determined by the

gbscissa z. Then at this poinf, and generally,
_dr. _1dy
dr =g 4=y, 3,4
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is an element of change in T and as such is & measure
of the strength of the elementary trailing vortex given
off at such point.

Now let y=#(x) be the equatmn to the curve
ABCD. Then we have

Yis=f () dz and

dP=Vij’ @) dz

Then the theory of induced or downwash velocity -

gives, for the point @,

1 4dr
4T (xl—o:)

1 f (x)dz
" 47Vp (m—a)

as the measure of the element of w at @ due to the
action of the vortex filament at P. (Reference 1.)

/Then the entire w at @ will be given by the integra-
tion of the above expression scross the span or from
A to D. This gives:

__ 1 (ff@de
Y fo M

11—

dw=

Agein the theory of induced drag gives, for the ele-
ment of D at the point .

dD =y 7da
where ¥ and w both refer to the point . Hence:

= %;fywdz: (2)

Equations (1) and (2) are basic with reference
to the theorem which we have now to develop and, ds

3
/;/ﬁ\

¢
FIGURE 2

noted above, it is assumed that the reader is familiar
with the general features of the vortex theory of lift
and with the establishment, from fundamental prin-
ciples, of these two equations.

We shall now proceed to establish the theorem in
question by a series of steps which may be listed as
follows:

(1} Given a basic distribution of lift across the
span. Denote this by (¢). Given a second small
or supplementary distribution. Denote this by (7).
Then we have to show that the induced drag of lift
(a@) in the downwash due to lift () and the induced
drag of lift (Z) in the downwash due to lift (&) are
equal, and that the total effect of the small distribu-
tion (1) on the induced drag will be measured by twice
either of these small equal quantities.

(2) We next suppose two smsll changes made in a
basic distribution (¢). These may be represented by
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(I) and (2). These are further assumed to be equal
in amount and opposite in algebraic sign, thus leaving
the original lift unchanged in amount, but changed in
distribution. Then under these conditions we have
to show that in order for the distribution (a) to be
that for minimum induced drag, the change in induced
drag due to this small change in distribution must be

1 zero.

(8) We have next to show that for any pair of small
changes in distribution such as (1) and (2) the only

"FluRE 3

value of the basic downwash w, which will meet the
condition of step (2) is w,=constant, or downwash
for the basic distribution=constant across the span.

(4) It is known mathematically that the elliptical
distribution of lift across the span is that which gives
a constant value of the downwash w and hence is that
which will give the minimum value of the induced
drag.

We shall now proceed with these steps in order.

(1) In Figure (2) let (a) represent a basic distribu-
tion of lift across the span and (I) a second or small
supplementary distribution. Then in equsation (1)
‘we may omit the constant factor and write:

wr

Let us integrate this expression in accordance with

the formula
_/‘ udv=up— fovdu

W~

Where « represents @ -—1—-)— and dv denotes f* () dz.
We shall then have—

Tf @ de_ f(x) + f(x)dx @)
- (m—x) (3‘1 93) P (21—2)

where —b and +b denote the limits of the integration
at A and D, Figure 1.

Taking the first term on the right, special caution
must be exercised in making the evaluation due to the
fact that in passing from z= —4 to 2=+, the denom-
inator passes through 0. The range of values of this
expression will be therefore as indicated in Figure (3).

W
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At A the value of f (z) is zero, but a zero approached
through positive values. YWe may therefore term
such a zero a0 and similarly one approached through
negative values, a—0. We shall then have at A,
fx)(@1—2z)=+0. Then as the point under considera-
tion approaches @ from A, the value of (x;—z) will
approach a positive zero and the value of f (z;) + (2. — )
at @ becomes + . Then as the point passes beyond
@ where 2>z, the zero shifts from positive to negative
and the value just on the right of ¢ becomes — « and
then graduslly decreases numerically as 2 increases,
finally approaching 0 on the negative side at D.

The fotal change in the value of the expression
from A to D is therefore from +0 to —(0 passing
through + = and — « on the way. Suppose, however,
that we take two points @; and ., respectively on
the left and right of @, and at a very small distance
¢ from . Then if for brevity wo represent the ex-
pression f(z)/(z; —z) by a single letter ¢, we may write—

= |1tme=0 -'594‘[_‘&91:”‘;’]11111.;-0
“’]: *’]Qz <

But as we have seen, ¢, and ¢p=0 and hence

I

But at @, fl@)=F(z,—e) and (xl—:z:)=e. Likewise
at @, f(z)=f(z:+6) and (z;—z)=—e¢. Hence we have
finally, restoring the original form,

zl(ic_)l l'_f(zn—e) f(z1+c) .

[l.ln e=0

e=0

This we may write '—

lim.e=0 -

Ve shall then have for equation (4)

amal ], - [+ L0 -

Now turning to equation (2) we may, for our pres-
ent purpose, omit the constant V and write

D~ fywdx (6)

Note that in this equation both w and y refer to
the point Q and the integration is with reference to z;.

Applying this equation to the case assumed in
Figure 2 we note that the total value of D will result
from four constituent elements as follows:

(a) That due to lift () in downwash (z)

(b) That due to lift (Z) in downwash (7)

(¢) That due to lift (¢) in downwash (1)

(d) That due to lift (1) in downwash (a)

Then considering (a) as basic, the change will bethe
sum of (b), (¢}, and (d). But if distribution () is
small in magnitude, item (b), will be small of the

t For a somawhat more formal mathematical treatmsnt of this evaluation, see
Appendix 1.

second order and negligible in comparison with the
other values. We shall have, therefore, for the re-
sultant effect of the supplementary distribution (1),
simply the sum of (¢) and (d).

Now referring to Figure 2, let us denote by sub-
scripts ¢ and I the various quantities referring to
these two distributions of lift. Then remembering,
as above noted, that in () y refers to the point @, as
fixed by the abscissa z;, we may write:

Ya=Fa (1)
and from (5) Bk @) |
5y B O S
(] P Ilm. e=0 - (2,'1_2)’

Next we apply (6) taking w, and %;,. This will give
the induced dseg for lift distribution (7) in the down-
wash ceused by distribution (¢). We thus have

D~z f(os)f‘“‘l’]dz ~ [ [ g,

1im. g=
Or writing the last term as a double integrsl,
+b [+b
~2f Fuln )fc(zl)]dx f fi (2 )fe(2) dzde

J-b (z—2)?
Hm. g=0 (8)
2 i b

Bf-*-a¢

: 3
o

: P

: oo

1 2 x>
a A

5
Ficuxe 4

Then vice versa if we take g, and w, we shall have
the induced drag for lift distribution (z) in the down-

wash caused by distribution (1). This will give:
Si(z) 0 fo ()i ()
Dave[ il Jom - [ [ TN D0

Im, e=0

(9)

Now in equations (8) and (9) it is'clear that the first
terms on the right, even though they do involve infini-
ties, will be equal. For the second terms, we refer to
Figure 4. The square with center at 0 and axes of z
and z, represents the combination of values of z and z;
to be covered by the integration. That is, every pos-
sible combination of values of z and z, between +5&
and —b& is represented by & point on this square and

R
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the double integral means that for each such point or
combination, the value of the expression under the sign
of integration is to be found, and these elements
summed. Now at a point P we shall have, in equation
(8) fo(:s) =f(AP) and f; (x) =f,(0A), while at the point
@ we shall have, in equation (9), f,(z;)=f;(0OB) and
Je(@)=fo(B@). But for any point P there will always
be another point @ for which AP=B@ and 0A=0B.
And what is true in the first quadrant will be equally
true in the others. Hence for every point represent-
ing a value in the numerator of equation (8) there will
be another point representing a value in equation (9)
such that the two values are equal, each to each. The
denominators likewise will be equal since (z,—z) will
have the same numerical value for each point, and in
the square the value will be the same regardless of the
sign. Hence the summations will be equal and the
values of (8) and (9) are equal throughout and 85 &
result, we have, D, =D, or—

The induced drag due to %, under dovn nwash w, wﬂl
equal that due to 7, under downwash w,. And further-
more since, as we have seen, the total effect is measured
by the sum of these two items, it will obviously be
measured by twice either one taken singly.

It may be noted at this point that the proof that
D;.=D,, is independent of the relative size of distribu-

ol b Xy —————

FIGURE b

tions (e) and (1) and that this relation is true generally.
For our present purposes, however, we are concerned
rather with the particular case where (1) is smell and
where the induced drag due to y; in the field wy; is
negligible and .'. where the total effect is measured as
gbove noted.

(2) The second stage in the proof calls for a con-
gideration of the results of making two small changes
in a basic distribution of lift, one positive and one
negative, equal in numerical value and of any char-
acter of distribution: See Figure 5. Here (1) and (2)
denote any two small distributions of ILift, No. (1)
positive and No. (2) negative, equal in numerical value
and distributed each in any menner along the span.

Due to the fact that (I) and (2) are both small it
will result that the elements of induced drag due to
YWy, YWy, Ysw; 804 Yw, will all be small of the second
order and therefore negligible in comparisor with the
other values. It will result then that the total change
in induced drag will be measured by the components:

D, =drag due to y, in field of w,
D,.=drag due to y, in field of w,
Dye=drag due to y, in field of w,
D,;=drag due to y, in field of w,
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But as we have seen,

Day=D,; and Dy=D,, and hence
DaI+D1a+DaJ+DM—2(Dm+Dn)

That is, the total change in the induced drag as a result
of these changes in the distribution of lift (the total
lift remaining the same) will be twice the sum of the
induced drags due to ¥ and ¥,, both in the down-
wash w,.

Now this total change may be (—), (+), or 0. If
it is (—), it will show that the original distribution
Ya was one which admitted of reduction in the induced
drag for the same total lift, and hence that it was not
the distribution for minimum induced drag.

If it is (+), it would be possible, by interchanging
the signs of the distributions (1) and (2), to make it
(—); that is, by making distribution () negative and
(%) positive, we should interchange the numerical rela-
tions and the result would change sign. This again
would show that the original distribution ¥, is not that
for the minimum induced drag.

If then the value 2(D,,+ D,,) is anything other than
zero, it will indicate that the basic distribution y, is
one which will give an induced drag permitting of
reduction (by redistribution) by an amount et least
measured by this value. Hence the only distribution
of y. which will give an induced drag not permitting
of reduction is that which will give zerc for the value
of the change 2(D;s+Dy.). But the condition for this
i8 Dyg=—D,,. From equation () this will mean:

SYwe dzy = — Sy, day (10)

while at the same time we have the condition:
f@/x dx1= _'fyg d.rt (11)

(3) To carry out step (3) of the proof, we note that
the simultaneous fulfillment of equations (10) and (11)
may be realized in two ways.

(1) For any and all pairs of distributions y, and y,
which mest equation (11) the only value of the basic
downwash w, which will meet equation (10) is
we=constant,.

(2) For any particular pair of distributions y; and y,
fulfilling equation (11), distributions of w, may be
found, not necessarily uniform in value, meeting equa-
tion (10) for this special pair y;, ¥, but failing for other
pairs which still meet equation (11).

In order not to interrupt the main argument at this
point, further reference to this point is transferred to
an appendix.

It appears, however, thaet the fulfillment of equation
(10) for any and all possible pairs of distributions y,
and y, which meet equation (11) (as is implied by the
character of the preceding argument) can only be
realized if w, is a constant multiplier under the sign
of infegration.
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That is, in order that the original distribution .
shall be that for minimum induced drag, it must be
such a distribution as will give a constant value of the
downwash w across the span. Under these conditions

then, a small supplementary induced drag T_lff Y dzy,
will equal numerically a second small supplementary
induced dreg /Y, provided Sydz= S ydz;

and es a result, where y, and y, are opposite in sign,
wo shall have D= —Dy; or D;.+ D,;=0, or no change

in the over-all induced drag for this small change in |

distribution. This condition, as we have seen, implies
that the basic induced drag is at its minimum velue
for the total lift as given by the distribution y..

(4) Now it is known that the elliptical distribution
across the span is that which will give & uniform value
of the downwash velgeity w. That is, it is known that

b7

for the elliptical distribution the value of -:j;s—'?—ix
is a constant and equal to x. It ismno part of the pres-
ent paper to prove this particular result. It is a mat-
ter of integral celculus, pure and simple, and while the
integration requires special care due to the fact that
in passing from —b to b the denominator becomes 0
and infinite values ars involved, it is here assumed that
this particular result is either known or accepted.
(Reference 2.)

The proof is thus complete that the ellipiteal distri-

bution of lift across the span is that which will give
the minimum value of the induced drag for the given

total lift so distributed.
An interesting side light on this problem may be
obtained by considering the results of & continued

g
FIGTRE §

series of small changes in distribution (the total re-

maining the same) such as to gradually change the | 2.

total distribution from something like that of (a) over

into (8) (See Fig. 6) and passing through the elliptical

form at & mid-point as indicated by the dotted line.
Such & series of changes could, of course, be realized
by the continued application of a series of equal plus
and minus small changes. In Figure 7 let z  denote

Q P
F
R
x x
B o E @ A
FIGURE 7

an axis of change and let A be the point for distribu-
tion a, B the point for distribution & and 0 that for the
elliptical distribution. Then AP may represent the
value of the induced drag for distribution e, B@ for
distribution b and OR for the semi-ellipse. Then the
entire series of changes by which ¢ is transformed into
b will give & series of values of the induced drag as indi-
cated by the curve PRQ and it is seen how any small
change from a distribution represented at E will
result in a slight decrease or increase in the value of
the ordinate EF depending on whether the change is
toward or away from the elliptical distribution. This
will indicate, as we have seen, that EF is not a mini-
mum ordinate and that the distribution of lift indi-
cated at E is not that for minimum induced drag. On
the other hand, with the distribution at 0 (elliptical)
and the value of the induced drag OR, any small
change either way will make no sensible change in the
ordinate OR; or otherwise the sum total of the change

i in OR will be zero and this will indicate that OR is &

minimum ordinate and that the distribution at 0
(elliptical) is that for the minimum value of the in-
duced drag.
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APPENDIX I

For the evalustion of the expression f(z)/(z;—z)
between the limits of —b and 485, we note first that
the function is assumed to be continuous and without
singularities. At any point near @, distant e, we
may therefore develop f(z)=f(z:+¢) by Taylor’s
theorem.

Thus for the point @, on the right of @ we shall
have:

J@) =fG) +f @)e +J¥e’+ ete.
And for the point @; on the left of @ we shell have:
F@) =fle) ~f e+ L2 et

_ Hence denoting by ¢ the function to be evaluated,
we shall have:

_fe)  f@de, f(x)

¢ n—r @on—z 2(@n—o)

_f@) flade, fr@) .

o -z m—zr 20—z

But for @, (m—2)=—¢ and for Q;, (m1—z)Y=-+e.
Hence we shell have:

]~ ey L,

14

q,]ax:f(cﬁ_f (@) +f"§1‘1) ¢

Toward the limit the terms having e in the numerator
with powers of 1 and higher will vanish and we shall

have:
99]01— -lQr:IHm- e-o=2f£zl):| 1ime em0
369







APPENDIX IT

Conditions under which we may have—

: other arrangements of the factor w, such however that,

. as a whole, the areas ABC and CDE will both be multi-

Sydz=fy.dx and (1)
Sywde= Sywdr (2)

In Figure 8 let y, and ¥, fulfill equation (1). Then
such condition may be expressed by

FiGURE 8

Area ABC=Area CDE

Now it is obvious that as we multiply the ordinates of
y; and y; by w as a factor, we shall likewise multiply
the ordinates of these difference sreas by the same
factor w. Then in order to insure the fulfillment of
equation (2), we have only to insure the multiplication
of these areas ABC and CDE, as a whole, by the same
factor. Thus if we multiply the areas ABC and CDE
both by some number m, the enlarged areas will still
be equeal numerically, and equation (2} will be fulfilled.
Now we can multiply these areas by m by multiplying
each’end every ordinate by m, or otherwise by various |
41630—81—25

. plied by the same over-all factor m. These special
: distributions of w all depend on the particular pair of

distributions v, ¥, and would not hold in general for
other distributions which still fulfill equation (1).

On the other hand if w is a constant factor, then no
matter what the pair of distributions y; ¥., equation
2) will be fulfilled. In such case we can, of course,
take the w out from the sign of integration and write

. for equation (2)

w Sy dr=wSy.dz

which is the same as (1)
But it is clear from the manner in which these small

. supplementary distributions y; and ¥y are used in

developing the line of proof, that they are entirely
unrestricted as to form and character, so long as
equation (1) is fulfilled. Or otherwise, to any one

basic distribution giving a downwash denoted in

general by w, we may, without in any way affecting the
argument, apply any and all types and forms of small
supplementary distribution %; and ., so long as
equation (1) is fulfilled, and the only single distribution
of w which will satisfy equation (2) with aeny and all
of these possible pairs y; and g, is w=constant. And
thus this link in the general proof is established.
371






APPENDIX IT

For those who may be interested, the following brief
outline of the formula, Lift=IpV is given. The de-
tails may be found in any good text on fluid mechanies.

Given a circular cylinder of infinite or indefinite
length placed in an infinite stream of fluid having two
component motions:

(1) A horizontal motion with velocity V in s
direction. L to the axis of the cylinder. Assume this
to be from right to left.

(2) A motion of rotation (assumed left handed)
about the axis of the cylinder with velocity at any dis-
tance r measured by I'f2xr.

Then for any circle with radius r, the product of the
length of the circumference by the velocity will be the
constant I'. 'This is called the circulation, or vortex
strength per unit length of the cylinder.

For an element of length dz, the corresponding
vortex sfrength will be I'dz.

Let p be the density of the fluid. Then for the total
force reaction on the cylinder per unit length, the
principles of the mechsanics of fluids (see any text-
book) give:

F=TpV

The theorem shows also that this foree is directed L
to the direction of flow of velocity V and such that the
body is urged toward the side on which the velocity
due to the circulation, or vortex motion, tends to
augment the direct velocity V. With the above as-
sumptions as to directions, this will be verticaily up-
ward. Such a force is called a “lift.”

We next assume a geometrical or imaginary cylin-
drical surface of radius B swrrounding the given
cylinder of radius r. The total reaction between the
fluid outside this surface and that inside will consist of
two paris: :

(1) A net resultant pressure acting over this surface
and directed the same as the net force on the cylinder
itself.

(2) A change of momentum directed downward ex-
perienced by the fluid during its passage through the
volume lying between the two cylindrical surfaces.

But the time rate of the change of momentum is the
measure of & force and the reaction of this change of
momentum downward will be a force upward to be
considered as acting over the surface of the cylinder of
radius R.

The same prineiples of mechanics will then show that
the sum of these two force reactions is again I'pV. The
two parts have values as follows:

F,=F—%—V<1 +§) (1)

F.=E;—V<1 - I’;,) 2)

where F, denotes the part due to pressure direct and
F,, that due to change of momentum.

If B=r, Fu=0 and the entire reaction is direct
pressure as we have seen. If R is very great, the two
parts approach equality at the half value I'pV/2 and
at = thesa values are reached. The sum, however, as
shown by the values in (1) and (2) is always I'pV.

Now, suppose R very large in comparision with r.
Then imagine the cylinder with radius r to be quickly
withdrawn and an indefinitely long body with airfoil
section substituted in its place, the latter being of
the same general order of size as the cylinder of radius
r. Or otherwise, consider a separate case, with the
airfoil section instead of the cylinder. With B very
large compared with the dimensions of the body, it
can make no sensible difference in the character of the
flow at and through the surface of the outer cylinder.
Or otherwise, we may say that we can certainly go to &
radius B so great that the flow at and through the
surface of a cylinder of this radius will differ insensibly
in the one case as compared with the other.

But over this surface of radius R, the total reaction
(pressure + momentum change) will be I'pV.

Consider agsain the condition of the fluid between
the two cylindrical surfaces. It is constantly under-
going & change of momentum as indicated in equation
(2). Furthermore, while the force reaction of the
fluid which is thus undergoing a change of momentum
is upward, or in the same direction &s the force Fy, the
direction of the change of momentum itself is down-
ward, or opposite to the direction of F,.

Now this fluid can be acted on from the outside,
only by way of pressure transmitted to it over two
surfaces—, the surface of the body of sirfoil section
and the surface of the cylinder of radius B. The
final downward momentum must then be the result
of the joint action of these two pressures. Call the
total force reaction, body to fluid, F. Since the
pressure F, is up, the force F must be down and we
ghall have

F—Fy=F,or F=F,+ Fpo=TpV

This gives the total force, body to fluid, down and
hence the equal force, fluid to body, is upward, and
messured by TpV, the same value as for the body
with circular cross section. Hence regardless of the
form of cross section of the body, the total force
reaction under the conditions assumed will be a lift
measured by T'pV.
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APPENDIX 1V

The effect of downwash is to produce a vertically |
downward current of velocity w about the airplane,
compounding with the relative horizontal velocity V.
The result is a direction of resultant flow relative to
the plane, tipped down at an angle, whose fangent is
w/V. Denote this angle by v. But the lift as defined
and as given by formulas and by measurement is al-
ways at right angles to the direction of relative wind.
Hence with downwash, the direction of the lift I will
be tipped back from the vertical at the same angle .
But Iift in this direction will have a backward compo-
nent L sin y. The angle v is always small, however, :

and we msay, therefore, without sensible error, take the
tangent for the sine and write L sin y=ZLw/V. This
force opposing the motion of the plane, is called the
induced drag. For a small element dz, of the span, it
will have the value

dD=g,:”§d:c1 as in equation (2)

StanrForp UNiveRsIiTY,
October 12, 1929.
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